Bitte beachten Sie: Diese archivierte Version des BaSiGo-Wikis wird nicht mehr aktualisiert. Das BaSiGo-Wiki wurde im Rahmen des BMBF-Forschungsprojektes 'Bausteine für die Sicherheit von Großveranstaltungen' (BaSiGo) entwickelt und stellt den Stand zum Projektende im Juni 2015 dar.

Sicherheitsbausteine/Verkehrliche Erschließung der Veranstaltung/Innere Erschließung des Veranstaltungsgeländes: Unterschied zwischen den Versionen

Aus BaSiGo - Bausteine für die Sicherheit von Großveranstaltungen
Zur Navigation springen Zur Suche springen
Zeile 1: Zeile 1:
{{DISPLAYTITLE:Innere Erschließung des Veranstaltungsgeländes}}
{{DISPLAYTITLE:Innere Erschließung des Veranstaltungsgeländes}}
===Fußgängerverkehre im Veranstaltungsablauf===
==Fußgängerverkehre im Veranstaltungsablauf==


:Status: siehe Abschnitte
:Status: siehe Abschnitte
Zeile 6: Zeile 6:




====Handrechenverfahren====
===Handrechenverfahren===


:Status: final
:Status: final
Zeile 12: Zeile 12:




=====Geltungsbereich=====
====Geltungsbereich====


Die hier genannten Empfehlungen gelten für den Fußgängerverkehr auf dem Veranstaltungsgelände. Fahrzeugverkehr, z. B. Einsatzfahrzeuge, Zuliefer- und Produktionsverkehr, wird nicht hinsichtlich seiner eigenen Verkehrsqualität, sondern ausschließlich in seiner Wirkung auf den Fußgängerverkehr berücksichtigt.
Die hier genannten Empfehlungen gelten für den Fußgängerverkehr auf dem Veranstaltungsgelände. Fahrzeugverkehr, z. B. Einsatzfahrzeuge, Zuliefer- und Produktionsverkehr, wird nicht hinsichtlich seiner eigenen Verkehrsqualität, sondern ausschließlich in seiner Wirkung auf den Fußgängerverkehr berücksichtigt.


=====Verfahren=====
====Verfahren====


Die Bemessung der Anlagen für den Fußgängerverkehr orientiert sich an den Empfehlungen des „Handbuchs für die Bemessung von Straßenverkehrsanlagen“ (HBS) (FGSV, 2005)<ref name=":1">HBS Handbuch für die Bemessung von Straßenverkehrsanlagen, Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2005.</ref>. Das Verfahren wird jedoch an die besonderen Anforderungen bei Großveranstaltungen angepasst. Die Kenngrößen für die Bewertung der Verkehrsqualität wurden empirisch bestimmt.
Die Bemessung der Anlagen für den Fußgängerverkehr orientiert sich an den Empfehlungen des „Handbuchs für die Bemessung von Straßenverkehrsanlagen“ (HBS) (FGSV, 2005)<ref name=":1">HBS Handbuch für die Bemessung von Straßenverkehrsanlagen, Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2005.</ref>. Das Verfahren wird jedoch an die besonderen Anforderungen bei Großveranstaltungen angepasst. Die Kenngrößen für die Bewertung der Verkehrsqualität wurden empirisch bestimmt.
Zeile 29: Zeile 29:
# Bewertung der Verkehrsqualität
# Bewertung der Verkehrsqualität


=====Schritt 1: Visualisierung der Verkehre=====
====Schritt 1: Visualisierung der Verkehre====


Die durch die Veranstaltung induzierten und alle zusätzlich auf dem Veranstaltungsgelände auftretenden Verkehre werden auf einem maßstäblichen Geländeplan visualisiert. Die Darstellung soll im Maßstab 1&nbsp;:&nbsp;500 (1&nbsp;cm&nbsp;≙&nbsp;5&nbsp;m), in keinem Fall aber in einem Maßstab kleiner als 1&nbsp;:&nbsp;1.000 (1&nbsp;cm&nbsp;≙&nbsp;10&nbsp; m) erfolgen. Als Plangrundlage sind kommunale Katasterpläne zu empfehlen.
Die durch die Veranstaltung induzierten und alle zusätzlich auf dem Veranstaltungsgelände auftretenden Verkehre werden auf einem maßstäblichen Geländeplan visualisiert. Die Darstellung soll im Maßstab 1&nbsp;:&nbsp;500 (1&nbsp;cm&nbsp;≙&nbsp;5&nbsp;m), in keinem Fall aber in einem Maßstab kleiner als 1&nbsp;:&nbsp;1.000 (1&nbsp;cm&nbsp;≙&nbsp;10&nbsp; m) erfolgen. Als Plangrundlage sind kommunale Katasterpläne zu empfehlen.
Zeile 37: Zeile 37:
Auf Grundlage der Visualisierung kann festgestellt werden, welche kritischen Teilstrecken für die weitere Betrachtung relevant sind. Besonderes Augenmerk soll sich auf die Identifizierung von bi- und multidirektionalen Verkehren an Kreuzungen und Engstellen (z.&nbsp;B. Absperrungen und Eingangsschleusen) richten.
Auf Grundlage der Visualisierung kann festgestellt werden, welche kritischen Teilstrecken für die weitere Betrachtung relevant sind. Besonderes Augenmerk soll sich auf die Identifizierung von bi- und multidirektionalen Verkehren an Kreuzungen und Engstellen (z.&nbsp;B. Absperrungen und Eingangsschleusen) richten.


=====Schritt 2: Erfassung der Verkehrsbelastungen=====
====Schritt 2: Erfassung der Verkehrsbelastungen====


Für jeden der in Schritt 1 erkannten kritischen Teilstrecken werden die zu erwartenden Verkehre in 60-, 30- oder 15-Minuten-Intervallen tabellarisch erfasst. Die Personenflüsse für jede Richtung werden mit den Kurzzeichen ''q<sub>A</sub>'', ''q<sub>B</sub>'' usw. (Einheit: Personen/Zeitintervall) bezeichnet. Die Personenflüsse pro Richtung und Zeitintervall werden anschließend addiert. Entscheidend für die weitere Betrachtung der Teilstrecken ist jeweils das Zeitintervall mit dem größten Personenfluss.  
Für jeden der in Schritt 1 erkannten kritischen Teilstrecken werden die zu erwartenden Verkehre in 60-, 30- oder 15-Minuten-Intervallen tabellarisch erfasst. Die Personenflüsse für jede Richtung werden mit den Kurzzeichen ''q<sub>A</sub>'', ''q<sub>B</sub>'' usw. (Einheit: Personen/Zeitintervall) bezeichnet. Die Personenflüsse pro Richtung und Zeitintervall werden anschließend addiert. Entscheidend für die weitere Betrachtung der Teilstrecken ist jeweils das Zeitintervall mit dem größten Personenfluss.  
Zeile 131: Zeile 131:
|}
|}


=====Schritt 3: Umrechnung der Verkehrsbelastungen auf 2-Minuten-Intervalle=====
====Schritt 3: Umrechnung der Verkehrsbelastungen auf 2-Minuten-Intervalle====


In Schritt 2 wurden die Verkehrsbelastungen (im Beispiel für 60-Minuten-Intervalle) erfasst. Innerhalb dieses Intervalls kann es aber zu Verkehrsspitzen kommen. Für den Fußgängerverkehr wird die Bemessungsverkehrsstärke ''q<sub>2</sub>'' (Einheit: Personen/2&nbsp;Minuten) auf Grundlage des höchstbelasteten 2-Minuten-Intervalls definiert. Die Umrechnung der Verkehrsbelastungen aus dem Erhebungsintervall (60-, 30- oder 15-Minuten-Intervalle) in die bemessungsrelevanten 2-Minuten-Intervalle erfolgt auf Grundlage der nachfolgenden Tabelle (vgl. HBS 2001 (FGSV, 2005)<ref name=":1">HBS Handbuch für die Bemessung von Straßenverkehrsanlagen, Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2005.</ref>, Tabelle 11-1). Diese berücksichtigt einen Sicherheitsfaktor für das Auftreten kurzzeitigen Verkehrsspitzen:
In Schritt 2 wurden die Verkehrsbelastungen (im Beispiel für 60-Minuten-Intervalle) erfasst. Innerhalb dieses Intervalls kann es aber zu Verkehrsspitzen kommen. Für den Fußgängerverkehr wird die Bemessungsverkehrsstärke ''q<sub>2</sub>'' (Einheit: Personen/2&nbsp;Minuten) auf Grundlage des höchstbelasteten 2-Minuten-Intervalls definiert. Die Umrechnung der Verkehrsbelastungen aus dem Erhebungsintervall (60-, 30- oder 15-Minuten-Intervalle) in die bemessungsrelevanten 2-Minuten-Intervalle erfolgt auf Grundlage der nachfolgenden Tabelle (vgl. HBS 2001 (FGSV, 2005)<ref name=":1">HBS Handbuch für die Bemessung von Straßenverkehrsanlagen, Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2005.</ref>, Tabelle 11-1). Diese berücksichtigt einen Sicherheitsfaktor für das Auftreten kurzzeitigen Verkehrsspitzen:
Zeile 153: Zeile 153:
<math> q_2 = q_{60} * 0,06 = 35.000 ~\tfrac{Personen}{60~Minuten} * 0,06 = 2.100 ~\tfrac{Personen}{2~Minuten}  </math>.
<math> q_2 = q_{60} * 0,06 = 35.000 ~\tfrac{Personen}{60~Minuten} * 0,06 = 2.100 ~\tfrac{Personen}{2~Minuten}  </math>.


=====Schritt 4: Berechnung der nutzbaren Breite der Gehfläche=====
====Schritt 4: Berechnung der nutzbaren Breite der Gehfläche====


Die effektiv zur Verfügung stehende Breite der Gehfläche ist entscheidend dafür, wie viele Personen den zu betrachtenden Wegabschnitt innerhalb einer bestimmten Zeitspanne passieren können. Bei der Berechnung der nutzbaren Breite ''B<sub>eff</sub>'' sind Hindernisse (Masten, Bäume, Poller, Abfallbehälter etc.) in ihrer geometrischen Breite zuzüglich der von den Fußgängern eingehaltenen Randabstände (0,25 bis 1,00&nbsp;m je Seite) zu berücksichtigen. Detaillierte Vorgaben für die Reduzierung der Breiten können dem „Handbuch für die Bemessung von Straßenverkehrsanlagen“ (HBS) entnommen werden.
Die effektiv zur Verfügung stehende Breite der Gehfläche ist entscheidend dafür, wie viele Personen den zu betrachtenden Wegabschnitt innerhalb einer bestimmten Zeitspanne passieren können. Bei der Berechnung der nutzbaren Breite ''B<sub>eff</sub>'' sind Hindernisse (Masten, Bäume, Poller, Abfallbehälter etc.) in ihrer geometrischen Breite zuzüglich der von den Fußgängern eingehaltenen Randabstände (0,25 bis 1,00&nbsp;m je Seite) zu berücksichtigen. Detaillierte Vorgaben für die Reduzierung der Breiten können dem „Handbuch für die Bemessung von Straßenverkehrsanlagen“ (HBS) entnommen werden.
Zeile 163: Zeile 163:
Für die weiteren Beispiel-Berechnungen wird eine nutzbare Breite von ''B<sub>eff</sub>&nbsp;=&nbsp;10&nbsp;m'' angenommen.
Für die weiteren Beispiel-Berechnungen wird eine nutzbare Breite von ''B<sub>eff</sub>&nbsp;=&nbsp;10&nbsp;m'' angenommen.


=====Schritt 5: Berechnung des spezifischen Flusses=====
====Schritt 5: Berechnung des spezifischen Flusses====


Auf Grundlage der in Schritt 3 bestimmten Verkehrsbelastung  und der in Schritt 4 berechneten nutzbaren Breite ''B<sub>eff</sub>'' kann der spezifische Personenfluss ''q<sub>s</sub>'' (Einheit: Personen/(Meter&nbsp;*&nbsp;Sekunde)) berechnet werden.
Auf Grundlage der in Schritt 3 bestimmten Verkehrsbelastung  und der in Schritt 4 berechneten nutzbaren Breite ''B<sub>eff</sub>'' kann der spezifische Personenfluss ''q<sub>s</sub>'' (Einheit: Personen/(Meter&nbsp;*&nbsp;Sekunde)) berechnet werden.
Zeile 173: Zeile 173:
<math> q_s = \tfrac{q_2 * \frac {2~Minuten}{120~Sekunden}}{B_{eff}} = \tfrac{2.100~\frac{Personen}{2~Minuten}*\frac{2~Minuten}{120~Sekunden}}{10,0~m} = \tfrac{17,5~\frac{Pers.}{s}}{10,0~m} = 1,75~\tfrac{Pers.}{m*s}</math>.
<math> q_s = \tfrac{q_2 * \frac {2~Minuten}{120~Sekunden}}{B_{eff}} = \tfrac{2.100~\frac{Personen}{2~Minuten}*\frac{2~Minuten}{120~Sekunden}}{10,0~m} = \tfrac{17,5~\frac{Pers.}{s}}{10,0~m} = 1,75~\tfrac{Pers.}{m*s}</math>.


=====Schritt 6: Bewertung der Verkehrsqualität=====
====Schritt 6: Bewertung der Verkehrsqualität====


Der für jede Teilstrecke berechnete, spezifische Fluss wird abschließend hinsichtlich seiner Verkehrsqualität bewertet. An Stelle der auf dem Level-of-Service-Konzept nach Fruin (1971) <ref> Fruin, J. J. (1971). Pedestrian Planning and Design.  New York.</ref> basierenden sechs Qualitätsstufen (QSV) des HBS wird für Großveranstaltungen ein Level-of-Safety-Konzept mit nur drei Qualitätsstufen (GRÜN, GELB, ROT) verwendet.
Der für jede Teilstrecke berechnete, spezifische Fluss wird abschließend hinsichtlich seiner Verkehrsqualität bewertet. An Stelle der auf dem Level-of-Service-Konzept nach Fruin (1971) <ref> Fruin, J. J. (1971). Pedestrian Planning and Design.  New York.</ref> basierenden sechs Qualitätsstufen (QSV) des HBS wird für Großveranstaltungen ein Level-of-Safety-Konzept mit nur drei Qualitätsstufen (GRÜN, GELB, ROT) verwendet.
Zeile 214: Zeile 214:
Für den spezifischen Fluss von ''q<sub>s</sub> = 1,75 Pers./ms'' ergibt sich, sowohl für den Ein- wie auch den Zwei-Richtungsverkehr, ein Level of Service „ROT“.
Für den spezifischen Fluss von ''q<sub>s</sub> = 1,75 Pers./ms'' ergibt sich, sowohl für den Ein- wie auch den Zwei-Richtungsverkehr, ein Level of Service „ROT“.


====Grenzen der Handrechenverfahren====
===Grenzen der Handrechenverfahren===


:Status: Final <br />
:Status: Final <br />
Zeile 221: Zeile 221:
Auf komplexen Gehflächen mit kreuzenden oder flächenhaft verteilten Fußgängerströmen ergeben sich Bereiche mit kritischen Fußgängerverkehrsdichten nicht zwangsläufig an den geometrischen Engstellen, sondern können bei der zeitlichen und räumlichen Überlagerung verschieden gerichteter Ströme unter Berücksichtigung von Warteflächen überall auf der Fläche auftreten. Hinzu können gepulkte Zuflüsse durch die Ankunft von Bussen oder Bahnen entstehen. Entsprechende Gegebenheiten lassen sich ausschließlich durch mikroskopische Simulation umfassend bewerten.
Auf komplexen Gehflächen mit kreuzenden oder flächenhaft verteilten Fußgängerströmen ergeben sich Bereiche mit kritischen Fußgängerverkehrsdichten nicht zwangsläufig an den geometrischen Engstellen, sondern können bei der zeitlichen und räumlichen Überlagerung verschieden gerichteter Ströme unter Berücksichtigung von Warteflächen überall auf der Fläche auftreten. Hinzu können gepulkte Zuflüsse durch die Ankunft von Bussen oder Bahnen entstehen. Entsprechende Gegebenheiten lassen sich ausschließlich durch mikroskopische Simulation umfassend bewerten.


====Mikrosimulation des Fußgängerverkehrs====
===Mikrosimulation des Fußgängerverkehrs===
Autor: Andreas Schomborg  <br />
Autor: Andreas Schomborg  <br />
Status:  Final; redaktionelle Änderungen folgen noch
Status:  Final; redaktionelle Änderungen folgen noch
Zeile 237: Zeile 237:
Sollten im Vorjahr oder bei der geplanten erstmaligen Veranstaltung Defizite durch die Simulation ermittelt werden ist es anschließend möglich verschiedene Szenarien / Optimierungen der Simulation „durchzuspielen“ und somit den Ablauf der Fußgängerströme auf dem Veranstaltungsgelände zu optimieren.
Sollten im Vorjahr oder bei der geplanten erstmaligen Veranstaltung Defizite durch die Simulation ermittelt werden ist es anschließend möglich verschiedene Szenarien / Optimierungen der Simulation „durchzuspielen“ und somit den Ablauf der Fußgängerströme auf dem Veranstaltungsgelände zu optimieren.


===Flucht- und Rettungswege===
==Flucht- und Rettungswege==


:Status: Final
:Status: Final

Version vom 1. Juni 2015, 11:37 Uhr

Fußgängerverkehre im Veranstaltungsablauf

Status: siehe Abschnitte
Autoren: siehe Abschnitte


Handrechenverfahren

Status: final
Autoren: Stefan Holl, Armin Seyfried


Geltungsbereich

Die hier genannten Empfehlungen gelten für den Fußgängerverkehr auf dem Veranstaltungsgelände. Fahrzeugverkehr, z. B. Einsatzfahrzeuge, Zuliefer- und Produktionsverkehr, wird nicht hinsichtlich seiner eigenen Verkehrsqualität, sondern ausschließlich in seiner Wirkung auf den Fußgängerverkehr berücksichtigt.

Verfahren

Die Bemessung der Anlagen für den Fußgängerverkehr orientiert sich an den Empfehlungen des „Handbuchs für die Bemessung von Straßenverkehrsanlagen“ (HBS) (FGSV, 2005)[1]. Das Verfahren wird jedoch an die besonderen Anforderungen bei Großveranstaltungen angepasst. Die Kenngrößen für die Bewertung der Verkehrsqualität wurden empirisch bestimmt.

Für die Planung des Fußgängerverkehrs bei Großveranstaltungen werden die folgenden, in den anschließenden Kapiteln näher beschriebenen Verfahrensschritte empfohlen:

  1. Visualisierung der Verkehre
  2. Erfassung der Verkehrsbelastungen
  3. Umrechnung der Verkehrsbelastungen auf 2-Minuten-Intervalle
  4. Berechnung der nutzbaren Breite der Gehfläche
  5. Berechnung des spezifischen Flusses
  6. Bewertung der Verkehrsqualität

Schritt 1: Visualisierung der Verkehre

Die durch die Veranstaltung induzierten und alle zusätzlich auf dem Veranstaltungsgelände auftretenden Verkehre werden auf einem maßstäblichen Geländeplan visualisiert. Die Darstellung soll im Maßstab 1 : 500 (1 cm ≙ 5 m), in keinem Fall aber in einem Maßstab kleiner als 1 : 1.000 (1 cm ≙ 10  m) erfolgen. Als Plangrundlage sind kommunale Katasterpläne zu empfehlen.

Für die Zeitabschnitte der Anreise, des Veranstaltungsbetriebes und der Abreise wird jeweils ein eigener Plan (bei CAD-Plänen als eigener Layer) erstellt, auf welchem die Verkehrsströme als Pfeile dargestellt werden. Bei besonderen Belastungsspitzen (z. B. in Folge der Taktung des ÖPNV) kann es sinnvoll sein, die Intervalle für die Darstellung auf 60, 30 oder 15 Minuten zu verkürzen.

Auf Grundlage der Visualisierung kann festgestellt werden, welche kritischen Teilstrecken für die weitere Betrachtung relevant sind. Besonderes Augenmerk soll sich auf die Identifizierung von bi- und multidirektionalen Verkehren an Kreuzungen und Engstellen (z. B. Absperrungen und Eingangsschleusen) richten.

Schritt 2: Erfassung der Verkehrsbelastungen

Für jeden der in Schritt 1 erkannten kritischen Teilstrecken werden die zu erwartenden Verkehre in 60-, 30- oder 15-Minuten-Intervallen tabellarisch erfasst. Die Personenflüsse für jede Richtung werden mit den Kurzzeichen qA, qB usw. (Einheit: Personen/Zeitintervall) bezeichnet. Die Personenflüsse pro Richtung und Zeitintervall werden anschließend addiert. Entscheidend für die weitere Betrachtung der Teilstrecken ist jeweils das Zeitintervall mit dem größten Personenfluss.

Beispiel:

In der folgenden Tabelle werden exemplarische Personenflüsse in 60-Minuten-Intervalle zusammengefasst. Für die beiden Teilstrecken T1 und T2 weist das Zeitintervall von 08:00 bis 09:00 Uhr mit 35.000 bzw. 11.000 Personen pro Stunde die höchste Verkehrsbelastung auf.

Teilstrecke Zeitintervall qA qB qC qD Σq60
T1 08:00 – 09:00 Uhr 10.000 25.000 0 0 35.000
09:00 – 10:00 Uhr 7.000 12.000 6.000 3.000 28.000
... ... ... ... ... ...
20:00 – 21:00 Uhr 20.000 2.000 3.000 0 25.000
21:00 – 22:00 Uhr 25.000 1.000 2.000 0 28.000
T2 08:00 – 09:00 Uhr 6.000 5.000 0 0 11.000
09:00 – 10:00 Uhr 5.000 3.000 0 0 8.000
... ... ... ... ... ...
20:00 – 21:00 Uhr 3.000 2.000 0 0 5.000
21:00 – 22:00 Uhr 2.000 1.000 0 0 3.000
... ... ... ... ... ... ...

Schritt 3: Umrechnung der Verkehrsbelastungen auf 2-Minuten-Intervalle

In Schritt 2 wurden die Verkehrsbelastungen (im Beispiel für 60-Minuten-Intervalle) erfasst. Innerhalb dieses Intervalls kann es aber zu Verkehrsspitzen kommen. Für den Fußgängerverkehr wird die Bemessungsverkehrsstärke q2 (Einheit: Personen/2 Minuten) auf Grundlage des höchstbelasteten 2-Minuten-Intervalls definiert. Die Umrechnung der Verkehrsbelastungen aus dem Erhebungsintervall (60-, 30- oder 15-Minuten-Intervalle) in die bemessungsrelevanten 2-Minuten-Intervalle erfolgt auf Grundlage der nachfolgenden Tabelle (vgl. HBS 2001 (FGSV, 2005)[1], Tabelle 11-1). Diese berücksichtigt einen Sicherheitsfaktor für das Auftreten kurzzeitigen Verkehrsspitzen:

Erhebungsintervall Umrechnungsfaktor
60 min 0,06
30 min 0,10
15 min 0,18

Beispiel:

Für die Teilstrecke T1 mit einer maximalen Verkehrsbelastung von 35.000 Personen pro Stunde (vgl. Beispiel zu Schritt 2) ergibt sich das bemessungsrelevante 2-Minuten-Intervall als

<math> q_2 = q_{60} * 0,06 = 35.000 ~\tfrac{Personen}{60~Minuten} * 0,06 = 2.100 ~\tfrac{Personen}{2~Minuten} </math>.

Schritt 4: Berechnung der nutzbaren Breite der Gehfläche

Die effektiv zur Verfügung stehende Breite der Gehfläche ist entscheidend dafür, wie viele Personen den zu betrachtenden Wegabschnitt innerhalb einer bestimmten Zeitspanne passieren können. Bei der Berechnung der nutzbaren Breite Beff sind Hindernisse (Masten, Bäume, Poller, Abfallbehälter etc.) in ihrer geometrischen Breite zuzüglich der von den Fußgängern eingehaltenen Randabstände (0,25 bis 1,00 m je Seite) zu berücksichtigen. Detaillierte Vorgaben für die Reduzierung der Breiten können dem „Handbuch für die Bemessung von Straßenverkehrsanlagen“ (HBS) entnommen werden.

Neben den statischen Hindernissen sind auch solche zu berücksichtigen, die nur temporär auftreten (Absperrungen, Verkaufsstände, Fahrzeuge etc.).

Beispiel:

Für die weiteren Beispiel-Berechnungen wird eine nutzbare Breite von Beff = 10 m angenommen.

Schritt 5: Berechnung des spezifischen Flusses

Auf Grundlage der in Schritt 3 bestimmten Verkehrsbelastung und der in Schritt 4 berechneten nutzbaren Breite Beff kann der spezifische Personenfluss qs (Einheit: Personen/(Meter * Sekunde)) berechnet werden.

Beispiel:

Bei einer Verkehrsbelastung von q2 = 2.100 Pers./2 Minuten und einer nutzbaren Breite Beff = 10,0 m ergibt sich der spezifische Fluss als

<math> q_s = \tfrac{q_2 * \frac {2~Minuten}{120~Sekunden}}{B_{eff}} = \tfrac{2.100~\frac{Personen}{2~Minuten}*\frac{2~Minuten}{120~Sekunden}}{10,0~m} = \tfrac{17,5~\frac{Pers.}{s}}{10,0~m} = 1,75~\tfrac{Pers.}{m*s}</math>.

Schritt 6: Bewertung der Verkehrsqualität

Der für jede Teilstrecke berechnete, spezifische Fluss wird abschließend hinsichtlich seiner Verkehrsqualität bewertet. An Stelle der auf dem Level-of-Service-Konzept nach Fruin (1971) [2] basierenden sechs Qualitätsstufen (QSV) des HBS wird für Großveranstaltungen ein Level-of-Safety-Konzept mit nur drei Qualitätsstufen (GRÜN, GELB, ROT) verwendet.

Bedeutung der drei Qualitätsstufen:

QSV = GRÜN: Es können gegenseitige Beeinflussungen zwischen den Fußgängern auftreten, die freie Wahl der Gehgeschwindigkeit wird aber nicht wesentlich beeinträchtigt.

QSV = GELB: Die Fußgänger werden häufig zu Änderungen ihren Geschwindigkeit und Richtung gezwungen. Lokale Störungen können sich bereits auf den Verkehrsfluss als Ganzes auswirken.

QSV = ROT: In Folge des hohen Verkehrsaufkommens kommt es zu erheblichen Behinderungen und Staus. Es ist mit sicherheitskritischen Situationen zu rechnen.

Für die Qualitätsstufen "GRÜN", "GELB" und "ROT" sind die Grenzwerte der spezifischen Flüsse entsprechend nachfolgender Tabelle anzusetzen. Als zusätzliche Information sind auch die zu erwartenden Personendichten ρ (Einheit: Personen pro Quadratmeter) angegeben.

Verkehrs- bzw. Anlagentyp Level of Safety
GRÜN GELB ROT
Ein-Richtungs-Verkehr qs ≤ 1,3 Pers/(ms)
(ρ ≤ 1,0 Pers./m2)
qs ≤ 1,6 Pers/(ms)
(ρ ≤ 1,7 Pers./m2)
qs > 1,6 Pers/(ms)
(ρ > 1,7 Pers./m2)
Zwei-Richtungs-Verkehr qs ≤ 0,6 Pers/(ms)
(ρ ≤ 0,5 Pers./m2)
qs ≤ 1,2 Pers/(ms)
(ρ ≤ 1,0 Pers./m2)
qs > 1,2 Pers/(ms)
(ρ > 1,0 Pers./m2)
Hinweis Auf Grundlage der BaSiGo-Experimente werden die Qualitätsstufen und Bemessungswerte derzeit noch validiert. Bemessungswerte für weitere Anlagentypen (Kreuzungen, Ecken, Aufenthalts- und Warteflächen, Flächen mit kombinierter Nutzung aus Aufenthalt und Fortbewegung) folgen.

Beispiel:

Für den spezifischen Fluss von qs = 1,75 Pers./ms ergibt sich, sowohl für den Ein- wie auch den Zwei-Richtungsverkehr, ein Level of Service „ROT“.

Grenzen der Handrechenverfahren

Status: Final
Autor: Andreas Schomborg

Auf komplexen Gehflächen mit kreuzenden oder flächenhaft verteilten Fußgängerströmen ergeben sich Bereiche mit kritischen Fußgängerverkehrsdichten nicht zwangsläufig an den geometrischen Engstellen, sondern können bei der zeitlichen und räumlichen Überlagerung verschieden gerichteter Ströme unter Berücksichtigung von Warteflächen überall auf der Fläche auftreten. Hinzu können gepulkte Zuflüsse durch die Ankunft von Bussen oder Bahnen entstehen. Entsprechende Gegebenheiten lassen sich ausschließlich durch mikroskopische Simulation umfassend bewerten.

Mikrosimulation des Fußgängerverkehrs

Autor: Andreas Schomborg
Status: Final; redaktionelle Änderungen folgen noch

In Kapitel 2.6.2.2 Mikrosimulation Fußgänger wurden bereits die spezifischen Charakteristika der Mikrosimulation von Fußgängern und die Unterschiede zur makroskopischen Simulation aufgezeigt. Grundsätzlich kann die Fußgängersimulation auf dem Veranstaltungsgelände ähnlich durchgeführt werden als außerhalb des Geländes. Die Fußgängerströme auf dem Veranstaltungsgelände interagieren in der Regel nicht mit anderen Verkehrsarten. Problematisch bei der Simulation von Fußgängerströmen auf einem Veranstaltungsgelände ist die Ermittlung der Nachfrage dieser. Sobald mehrere Wege zur Erreichung unterschiedlicher Quellen und Ziele zur Verfügung stehen kann die Ermittlung der Fußgängermengen aufwendig werden. Die notwendigen Informationen über die Wegebeziehungen auf einem Veranstaltungsgelände können beispielsweise durch:

  • ein Makroskopisches Modell prognostiziert,
  • eine Befragung ermittelt,
  • durch GPS-gestützte Bewegungsprofile bestimmt,
  • oder es müssen Annahmen getroffen werden.

Welche Methode sinnvoll einsetzbar ist hängt stark davon ab, wie häufig eine Veranstaltung stattfindet oder wie viele Quellen und Ziele es auf einem Gelände gibt. Sofern eine Veranstaltung das erste Mal stattfindet muss entweder durch sinnvolle Annahmen oder durch einen Modelleinsatz Fußgängermengen prognostiziert werden. Bei wiederkehrenden Veranstaltungen bieten sich Befragungen oder GPS-gestützte Erhebungen an.

Ziel dieser Erhebungen ist es mit den Bewegungsprofilen Quell- und Zielverkehrsströme auf dem Veranstaltungsgelände zu quantifizieren. Bei GPS-gestützen Erhebungen ist es zudem möglich Geschwindigkeitsprofile zu ermitteln. Die erhobenen Daten werden genutzt, um des Simulationsmodell für den Ist-Zustand (Analysefall) zu kalibrieren. Je mehr Daten vorliegen, desto präziser kann eine Modell kalibriert und validiert werden. Im Fall einer widerkehrenden Veranstaltung ist dies praktisch die Nachbildung des Vorjahres. Im Fall einer erstmalig stattfindenden Veranstaltung ist es der prognostizierte, bzw. vorgesehene oder erwartete Ablauf. Sollten im Vorjahr oder bei der geplanten erstmaligen Veranstaltung Defizite durch die Simulation ermittelt werden ist es anschließend möglich verschiedene Szenarien / Optimierungen der Simulation „durchzuspielen“ und somit den Ablauf der Fußgängerströme auf dem Veranstaltungsgelände zu optimieren.

Flucht- und Rettungswege

Status: Final
Autoren: Stefan Holl, Armin Seyfried


Derzeit existieren keine allgemeingültigen Rechtsnormen für die Bemessung der Flucht- und Rettungswege auf dem Veranstaltungsgelände (vgl. rechtliche Grundlagen). Als erste Orientierung für die notwendigen Breiten und Längen der Flucht- und Rettungswege sowie die Verteilung der Notausgänge kann die von der Fachkommission Bauaufsicht der Bauministerkonferenz erlassene „Musterverordnung über den Bau und Betrieb von Versammlungsstätten“ (MVStättVO, 2005)[3] herangezogen werden. § 7 der MVStättVO verlangt für Versammlungsstätten im Freien:

„Die Breite der Rettungswege ist nach der größtmöglichen Personenzahl zu bemessen. Dabei muss die lichte Breite eines jeden Teils von Rettungswegen für die darauf angewiesenen Personen mindestens betragen […] 1,20 m je 600 Personen, […] Zwischenwerte sind zulässig. Die lichte Mindestbreite eines jeden Teils von Rettungswegen muss 1,20 m betragen.“

Die Entfernung von jedem Besucherplatz bis zum nächsten Ausgang in einen sicheren Bereich soll analog zu den Regelungen der MVStättVO nicht mehr als 60 Meter betragen. Die Notausgänge sind so zu verteilen, dass möglichst kurze Wege entstehen.

Die Flucht- und Rettungswege sind während der gesamten Veranstaltung, aber auch während der Auf- und Abbauphasen freizuhalten. Die Zugänge und Zufahrten zum Veranstaltungsgelände sowie die Aufstell- und Bewegungsflächen für die Feuerwehr sind mit der örtlichen Dienststelle abzustimmen. Maßgeblich sind die Anforderungen der entsprechenden Landesbauordnung. Als erste Orientierung kann § 5 der "Musterbauordnung" (MBO, 2002)[4] herangezogen werden.

  1. 1,0 1,1 HBS Handbuch für die Bemessung von Straßenverkehrsanlagen, Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2005.
  2. Fruin, J. J. (1971). Pedestrian Planning and Design. New York.
  3. Fachkommission Bauaufsicht der Bauministerkonferenz: Musterverordnung über den Bau und Betrieb von Versammlungsstätten (MVStättVO) in der Fassung vom Juni 2005, zuletzt geändert durch Beschluss der Fachkommission Bauaufsicht vom Februar 2014.
  4. Fachkommission Bauaufsicht der Bauministerkonferenz: Musterbauordnung (MBO) in der Fassung vom November 2002, zuletzt geändert durch Beschluss der Bauministerkonferenz vom 21.09.2012.